КАНДИДАТСКИЙ ЭКЗАМЕН

Весна 2017

<u>Задача 1.</u> Омыление этилацетата в водном растворе при $25 \, ^{\circ}$ С является необратимой бимолекулярной реакцией с константой скорости $k = 6.6 \, \text{л/(моль·мин)}$:

$$CH_3COOC_2H_5 + OH^- \rightarrow CH_3COO^- + C_2H_5OH$$

В термостатируемой при 25 °C колбе быстро смешивают 25 мл 0.15 M раствора этилацетата и 50 мл 0.075 M раствора NaOH. Определите время полупревращения ($\tau_{1/2}$) сложного эфира.

<u>Задача 2.</u> Окисление СО в реакторе **идеального вытеснения** на поверхности катализатора Pd/SiO₂ протекает согласно механизму:

 $2Z + O_2 \rightarrow 2ZO$ медленная, k_1 Z + CO = ZCO равновесная, K_2 $ZCO + ZO \rightarrow 2Z + CO_2$ быстрая, k_3

В термостатируемый при 400 °C реактор со скоростью 20 мл/с подаётся газовая смесь, содержащая 1 об.% CO, 20 об.% O_2 и 79 об.% N_2 . Получите **выражение** для зависимости степени превращения CO (α) от времени контакта (τ), если известно, что поверхность катализатора почти полностью покрыта монооксидом углерода.

<u>Задача 3.</u> Превращение субстрата S в продукт P, катализируемое ферментом E, протекает согласно схеме:

- (1) E + S = ES (активный комплекс ES, равновесная стадия, $K_1 = 5.26 \cdot 10^4 \,\mathrm{M}^{-1}$)
- $ES + S = ES_2$ (неактивный комплекс ES_2 , равновесная стадия, $K_2 = 5.88 \cdot 10^2 \, \text{M}^{-1}$)
- (3) ES \rightarrow E + P $(k_3 = 8.3 \text{ c}^{-1})$

Получите **выражение** для зависимости начальной скорости реакции (W_0) от начальной концентрации субстрата $([S]_0)$, и схематично **изобразите** эту зависимость на графике. **Определите** значение $[S]_0$, при котором начальная скорость реакции будет максимальной, если $[E]_0 << [S]_0$?

<u>Задача 4.</u> Изопропилбензол получают из бензола и пропилена в газовой фазе в проточном реакторе при постоянном давлении 8 бар, температуре 500 K, мольном соотношении бензол/пропилен = 5/1, на катализаторе AlCl₃. Целевой процесс

 $C_6H_6 + C_3H_6 = \mu_{30} - C_6H_5C_3H_7$

сопровождается образованием н-пропилбензола по реакции:

 $C_6H_6 + C_3H_6 = H - C_6H_5C_3H_7$

Для равновесного состояния определите 1) выход изо- и н-пропилбензола в моль.% относительно пропилена, 2) конверсию бензола и пропилена, и объясните, 3) как изменится соотношение изомеров при уменьшении температуры.

	C_6H_6	C_3H_6	изо- $C_6H_5C_3H_7$	$H-C_6H_5C_3H_7$
$\Delta_{ m f}{ m H}^0$ ₅₀₀ , кДж/моль	56,698	3,217	-38,253	-33,957
S^0_{500} , Дж/(моль·К)	311,465	299,369	467,1	480,1

<u>Задача 5.</u> Способность к восстановлению никеля в никель-хромовом оксидном катализаторе NiO•Cr₂O₃ зависит от соотношения элементов в его составе (таблица 1).

Таблица 1. Зависимость степени восстановления никеля в катализаторе от его состава.

_					
атомное отношение Ni/Cr			0.5	0.7	0.8
	доля восстановленного никеля, $Ni_{\text{мет}}/Ni_{\text{общ}}$	0.01	0.1	0.40	0.63

- 1. Оценить требуемое весовое соотношение NiO/Cr_2O_3 в исходном образце, при восстановлении которого доля металлического никеля составит 0.25.
- 2. Каким будет процентное весовое содержание фазы металла в восстановленном образце?

Атомная масса никеля -58.7 а.е.м., хрома -52 а.е.м., кислорода -16 а.е.м.

Решения.

1.

Полученная смесь представляет собой эквимолярный водный раствор щёлочи и этилацетата. Эфира 3.75 ммоль, щёлочи 3.75 ммоль, объём раствора 75 мл, концентрации 0.05 М каждого из компонентов.

$$d[\Im]/dt = -k_1[\Im][\coprod] = -k_1[\Im]^2$$

интегрирование этого уравнения даёт: $2/[\Im]_0 - 1/[\Im]_0 = k_1 \tau_{1/2} \rightarrow \tau_{1/2} = (k_1 [\Im]_0)^{-1} = 3$ мин.

2

$$W = k_1[O_2]\theta_Z^2$$

$$K_2 = \theta_{ZCO}/([CO]\theta_Z)$$

Согласно условию, $\theta_{ZCO} \approx 1$, поэтому можно считать $\theta_Z = 1/(K_2[CO])$

$$W = k_1[O_2]/(K_2[CO])^2$$

Исходя из условия, очевидно, что концентрация кислорода в системе практически постоянная. Кроме того, скорость газовой смеси на входе и выходе реактора совпадают.

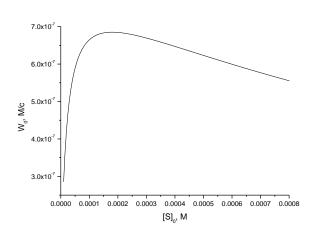
 $d[CO]/dt = -2k_1[O_2]/(K_2[CO])^2$

$$[CO]^2 d[CO] = -2k_1[O_2]dt/K_2^2$$

 $[CO]^3 - [CO]_0^3 = -2k_1[O_2]\tau/K_2^2$

$$\alpha = ([CO]_0 - [CO])/[CO]_0 = 1 - [CO]/[CO]_0$$

$$\alpha^{3} - 1 = -2k_{1}[O_{2}]\tau/([CO]_{0}^{3}K_{2}^{2})$$


$$\alpha = (1 - 2k_{1}[O_{2}]\tau/([CO]_{0}^{3}K_{2}^{2}))^{1/3}$$

3.

$$W = k_3[ES]$$

$$[E]_0 = [E] + [ES] + [ES_2] = [E](1 + K_1[S] + K_1K_2[S]^2)$$

$$W_0 = k_3 K_1[E]_0[S]_0/(1 + K_1[S]_0 + K_1 K_2[S]_0^2)$$

 W_0 max при $[S]_0 = K_2^{-0.5} = 1.8 \cdot 10^{-4}$ M.

4.

Для первой реакции:

 $\Delta_{\rm r} {\rm H}^0(500) = -98168$ Дж/моль, $\Delta_{\rm r} {\rm S}^0(500) = -143.73$ Дж/(К·моль), $\Delta_{\rm r} {\rm G}^0(500) = -26301$ Дж/моль, ${\rm K}_{\rm p1} = 561$.

Для второй реакции:

$$\Delta_{\rm r} {\rm H}^0(500) = -93872~{\rm Дж/моль}, \ \Delta_{\rm r} {\rm S}^0(500) = -130.73~{\rm Дж/(K\cdot моль)}, \ \Delta_{\rm r} {\rm G}^0(500) = -28505~{\rm Дж/моль}, \ {\rm K}_{\rm p2} = 954$$

Очевидно, что пропилен практически полностью израсходуется. Конверсия пропилена 100%, а конверсия бензола 20%. Соотношение H/u30 = K_{p2}/K_{p1} = 1.7. Следовательно, 37% пропилена перейдёт в кумол, а 63% - в н-пропилбензол.

Реакция изо \rightarrow н при 500 К эндотермическая ($\Delta_r H^0(500) = 4296 \ Дж/моль$). Следовательно, повышение температуры приведёт к сдвигу равновесия вправо (в сторону н- изомера).

5.

Пользуясь линейной интерполяцией, оцениваем требуемое атомное отношение Ni/Cr \approx 0.6. Пусть в образце содержится 1 грамм NiO (13.4 ммоль Ni). Тогда нужно 22.3 ммоль Cr (11.2 ммоль Cr₂O₃) и, соответственно, 1.7 грамм Cr₂O₃.

В восстановленном образце будет:

11.2 ммоль (1.7 грамм, 64.5%) Cr_2O_3 , 3.35 ммоль (0.20 грамм, 7.5%) Ni, 10.1 ммоль (0.75 грамм, 28%) NiO.